CALCULUS BLUE

SCHEDULE R. Ghrist 2020

MULTIVARIABLE

CALCULUS BLUE CHAPTERS

WEEK	TOPICS	VOL	CORE	EXTRA	OPTIONAL
1	lines, planes, surfaces, coordinates; vectors; dot, cross, & scalar triple products	1	1, 2, 3 4, 5, 6		
2	intro to vector calculus; motivating matrices matrix algebra, linear systems, & row reduction	1	7, 8, 9 10, 11, 12		
3	inverses; linear transformations & bases determinants	1	13, 14, 15 16, 17, 18		
4	multivariate functions & partial derivatives derivatives as linear transformations;	2	1, 2, 3, 4		
5	chain rule, derivative rules inverse & implicit function theorems	2	5, 6 7	8	
6	gradients, tangents, & linearization multivariate Taylor expansion	2	9, 10, 11	12, 13	
7	optimization and applications Lagrange multipliers in optimization	2	14 17, 18, 19	16	15
8	multiple integrals & Fubini double & triple integrals; averages	3	1, 2 3, 4, 5		
9	centroids, & moments multivariate probability	3	6, 7 10, 11		8, 9 12
10	cylindrical & spherical coordinates change of variables, surface integrals	3	13, 14 15, 16	17	18, 19
11	scalar fields, vector fields, path integrals independence of path; work/circ/flux	4	1, 2, 3 4, 5		
12	green's theorem div, curl; differential forms	4	6 7, 8		
13	integrating 2-form fields Gauss' Theorem & Stokes' Theorem	4	9 10, 11		
14	using Green, Gauss, & Stokes applications	4	12 REVIEW	15	13, 14 16, 17, 18

Assumptions:

14 week semester weekly meetings / assignments **CORE:** These are the essential chapters **EXTRA:** Important for the story, but hard **OPT:** Optional; best for engineers